2D ID数组和1D权重的加权numpy bincount

ttsesm

我正在使用numpy_indexed来应用矢量化的numpy bincount,如下所示:

import numpy as np
import numpy_indexed as npi
rowidx, colidx = np.indices(index_tri.shape)
(cols, rows), B = npi.count((index_tri.flatten(), rowidx.flatten()))

index_tri以下矩阵在哪里

index_tri = np.array([[ 0,  0,  0,  7,  1,  3],
       [ 1,  2,  2,  9,  8,  9],
       [ 3,  1,  1,  4,  9,  1],
       [ 5,  6,  6, 10, 10, 10],
       [ 7,  8,  9,  4,  3,  3],
       [ 3,  8,  6,  3,  8,  6],
       [ 4,  3,  3,  7,  8,  9],
       [10, 10, 10,  5,  6,  6],
       [ 4,  9,  1,  3,  1,  1],
       [ 9,  8,  9,  1,  2,  2]])

然后,将合并的值映射到以下初始化矩阵的相应位置m

m = np.zeros((10,11))
m 
array([[0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],
       [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],
       [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],
       [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],
       [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],
       [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],
       [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],
       [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],
       [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],
       [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]])

m[rows, cols] = B
m
array([[3., 1., 0., 1., 0., 0., 0., 1., 0., 0., 0.],
       [0., 1., 2., 0., 0., 0., 0., 0., 1., 2., 0.],
       [0., 3., 0., 1., 1., 0., 0., 0., 0., 1., 0.],
       [0., 0., 0., 0., 0., 1., 2., 0., 0., 0., 3.],
       [0., 0., 0., 2., 1., 0., 0., 1., 1., 1., 0.],
       [0., 0., 0., 2., 0., 0., 2., 0., 2., 0., 0.],
       [0., 0., 0., 2., 1., 0., 0., 1., 1., 1., 0.],
       [0., 0., 0., 0., 0., 1., 2., 0., 0., 0., 3.],
       [0., 3., 0., 1., 1., 0., 0., 0., 0., 1., 0.],
       [0., 1., 2., 0., 0., 0., 0., 0., 1., 2., 0.]])

但是,这认为index_tri每列中每个值的权重为1。现在,如果我有一个weights数组,则为每列中提供一个相应的权重值,index_tri而不是1:

weights = np.array([0.7, 0.8, 1.5, 0.6, 0.5, 1.9])

如何应用加权二进制计数,以便我的输出矩阵m如下:

array([[3., 0.5, 0., 1.9, 0., 0., 0., 0.6, 0., 0., 0.],
       [0., 0.7, 2.3, 0., 0., 0., 0., 0., 0.5, 2.5, 0.],
       [0., 4.2, 0., 0.7, 0.6, 0., 0., 0., 0., 0.5, 0.],
       [0., 0., 0., 0., 0., 0.7, 2.3, 0., 0., 0., 3.],
       [0., 0., 0., 2.4, 0.6, 0., 0., 0.7, 0.8, 1.5, 0.],
       [0., 0., 0., 2.3, 0., 0., 2.4, 0., 1.3, 0., 0.],
       [0., 0., 0., 2.3, 0.7, 0., 0., 0.6, 0.5, 1.9, 0.],
       [0., 0., 0., 0., 0., 0.6, 2.4, 0., 0., 0., 3.],
       [0., 3.9, 0., 0.6, 0.7, 0., 0., 0., 0., 0.8, 0.],
       [0., 0.6, 2.4, 0., 0., 0., 0., 0., 0.8, 2.2, 0.]])

任何想法?


通过使用for循环和numpy,bincount()我可以如下解决它:

for i in range(m.shape[0]):
   m[i, :] = np.bincount(index_tri[i, :], weights=weights, minlength=m.shape[1])

我试图分别此处此处适应矢量化提供的解决方案,但是我无法弄清楚该ix2D变量在第一个链接中对应的含义如果可能的话,有人可以详细说明一下。


更新(解决方案):

基于下面的@Divakar解决方案,这是一个更新的版本,如果您的索引输入矩阵不能覆盖输出初始化矩阵的全部范围,则它需要一个额外的输入参数:

    def bincount2D(id_ar_2D, weights_1D, sz=None):
        # Inputs : 2D id array, 1D weights array

        # Extent of bins per col
        if sz == None:
            n = id_ar_2D.max() + 1
            N = len(id_ar_2D)
        else:
            n = sz[1]
            N = sz[0]

        # add offsets to the original values to be used when we apply raveling later on
        id_ar_2D_offsetted = id_ar_2D + n * np.arange(N)[:, None]

        # Finally use bincount with those 2D bins as flattened and with
        # flattened b as weights. Reshaping is needed to add back into "a".
        ids = id_ar_2D_offsetted.ravel()
        W = np.tile(weights_1D, N)
        return np.bincount(ids, W, minlength=n * N).reshape(-1, n)
迪卡卡

受到this post-的启发

def bincount2D(id_ar_2D, weights_1D):
    # Inputs : 2D id array, 1D weights array
    
    # Extent of bins per col
    n = id_ar_2D.max()+1
    
    N = len(id_ar_2D)
    id_ar_2D_offsetted = id_ar_2D + n*np.arange(N)[:,None]
    
    # Finally use bincount with those 2D bins as flattened and with
    # flattened b as weights. Reshaping is needed to add back into "a".
    ids = id_ar_2D_offsetted.ravel()
    W = np.tile(weights_1D,N)
    return np.bincount(ids, W, minlength=n*N).reshape(-1,n)

out = bincount2D(index_tri, weights)

本文收集自互联网,转载请注明来源。

如有侵权,请联系[email protected] 删除。

编辑于
0

我来说两句

0条评论
登录后参与评论

相关文章

Related 相关文章

热门标签

归档