如何计算CPU内核的频率

亚历山德鲁

我正在尝试使用RDTSC,但似乎我的方法可能无法获得核心速度:

#include "stdafx.h"
#include <windows.h>
#include <process.h>
#include <iostream>

using namespace std;

struct Core
{
    int CoreNumber;
};

static void startMonitoringCoreSpeeds(void *param)
{
    Core core = *((Core *)param);
    SetThreadAffinityMask(GetCurrentThread(), 1 << core.CoreNumber);
    while (true)
    {
        DWORD64 first = __rdtsc();
        Sleep(1000);
        DWORD64 second = __rdtsc();
        cout << "Core " << core.CoreNumber << " has frequency " << ((second - first)*pow(10, -6)) << " MHz" << endl;
    }
}

int GetNumberOfProcessorCores()
{
    DWORD process, system;
    if (GetProcessAffinityMask(GetCurrentProcess(), &process, &system))
    {
        int count = 0;
        for (int i = 0; i < 32; i++)
        {
            if (system & (1 << i))
            {
                count++;
            }
        }
        return count;
    }
    SYSTEM_INFO sysinfo;
    GetSystemInfo(&sysinfo);
    return sysinfo.dwNumberOfProcessors;
}

int _tmain(int argc, _TCHAR* argv[])
{
    for (int i = 0; i < GetNumberOfProcessorCores(); i++)
    {
        Core *core = new Core {0};
        core->CoreNumber = i;
        _beginthread(startMonitoringCoreSpeeds, 0, core);
    }
    cin.get();
}

它总是打印出约3.3 GHz的值,这是错误的,因为诸如Turbo Boost之类的功能会不时打开,并且我的内核肯定会跳至4.3 GHz。让我交叉引用这个想法背后的一些文章。

首先,(http://users.utcluj.ro/~ancapop/labscs/SCS2.pdf):“处理器核心上的TSC未同步。因此,不确定在执行过程中进程是否从一个核心迁移到另一个核心,测量将不会受到影响。为避免此问题,被测量的进程的亲和力必须设置为一个核心,以防止进程迁移。” 这告诉我,RDTSC应该使用我设置的相似性掩码为我的线程使用的每个内核返回不同的值,这很棒。

其次,请检查这篇文章http://randomascii.wordpress.com/2011/07/29/rdtsc-in-the-age-of-sandybridge/):“如果需要一个可在内核之间使用的一致的计时器,并且可以用来测量时间,那么这是个好消息。如果您要测量实际的CPU时钟周期,那么您就不走运了。如果要在广泛范围内保持一致性,更新:《英特尔系统编程指南》第16.11节记录了时间戳计数器的这种行为,粗略地说,它表示在旧处理器上时钟频率会发生变化,但在较新处理器上时钟频率会保持一致最后,对于Constant TSC,它说:“这是向前发展的建筑行为。” 好的,这告诉我RDTSC保持一致,这使我的上述结果有意义,因为我的CPU内核额定为标准3.3 GHz。

哪一个真正的问题是,英特尔的Turbo Boost Technology Monitor,Piriform的Speccy和CPUID的CPU-Z等应用程序如何在实时进行Turbo Boost的同时测量处理器的时钟速度?

亚历山德鲁

完整的解决方案如下。我已经在MSDN上改编了IOCTL示例驱动程序来做到这一点。注意,IOCTL示例是我可以找到的唯一相对WDM示例框架驱动程序,也是我能找到的最接近WDM模板的东西,因为WDK中大多数现成的内核模式模板都是基于WDF的驱动程序(任何WDM驱动程序模板都是实际上完全空白,没有任何源代码),但是我看到的唯一实现此输入/输出的示例逻辑是通过基于WDM的驱动程序另外,我还学到了一些有趣的事实:内核驱动程序不喜欢浮动算法,您不能使用“ windows.h”,这实际上将您限制为“ ntddk.h”,这是一种特殊的内核模式标头。这也意味着我无法在内核模式下进行所有计算,因为我无法在其中调用QueryPerformanceFrequency之类的函数,因此我必须获取时间戳之间的平均性能比,并将它们返回到用户模式以进行某些计算(如果没有QueryPerformanceFrequency,则从CPU寄存器中存储的价格(如QueryPerformanceCounter所使用的刻度)的值是无用的,因为您不知道步长;也许对此有一种解决方法,但我选择使用均值是因为它工作得很好。 。而且,根据一秒钟的睡眠您可以随时增加增量,但相对于步长,它仍应提供相同的比率此外,这是我所能做到的极简主义。祝你好运,使它变得比这更小或更短。另外,如果您要安装驱动程序,则有两种选择,除非您想从某个第三方购买代码签名证书,否则这两种方法都很糟糕,因此请选择其中一种并加以吸收。让我们从驱动程序开始:

driver.c

//
// Include files.
//

#include <ntddk.h>          // various NT definitions
#include <string.h>
#include <intrin.h>

#include "driver.h"

#define NT_DEVICE_NAME      L"\\Device\\KernelModeDriver"
#define DOS_DEVICE_NAME     L"\\DosDevices\\KernelModeDriver"

#if DBG
#define DRIVER_PRINT(_x_) \
                DbgPrint("KernelModeDriver.sys: ");\
                DbgPrint _x_;

#else
#define DRIVER_PRINT(_x_)
#endif

//
// Device driver routine declarations.
//

DRIVER_INITIALIZE DriverEntry;

_Dispatch_type_(IRP_MJ_CREATE)
_Dispatch_type_(IRP_MJ_CLOSE)
DRIVER_DISPATCH DriverCreateClose;

_Dispatch_type_(IRP_MJ_DEVICE_CONTROL)
DRIVER_DISPATCH DriverDeviceControl;

DRIVER_UNLOAD DriverUnloadDriver;

VOID
PrintIrpInfo(
    PIRP Irp
    );
VOID
PrintChars(
    _In_reads_(CountChars) PCHAR BufferAddress,
    _In_ size_t CountChars
    );

#ifdef ALLOC_PRAGMA
#pragma alloc_text( INIT, DriverEntry )
#pragma alloc_text( PAGE, DriverCreateClose)
#pragma alloc_text( PAGE, DriverDeviceControl)
#pragma alloc_text( PAGE, DriverUnloadDriver)
#pragma alloc_text( PAGE, PrintIrpInfo)
#pragma alloc_text( PAGE, PrintChars)
#endif // ALLOC_PRAGMA


NTSTATUS
DriverEntry(
    _In_ PDRIVER_OBJECT   DriverObject,
    _In_ PUNICODE_STRING      RegistryPath
    )
/*++

Routine Description:
    This routine is called by the Operating System to initialize the driver.

    It creates the device object, fills in the dispatch entry points and
    completes the initialization.

Arguments:
    DriverObject - a pointer to the object that represents this device
    driver.

    RegistryPath - a pointer to our Services key in the registry.

Return Value:
    STATUS_SUCCESS if initialized; an error otherwise.

--*/

{
    NTSTATUS        ntStatus;
    UNICODE_STRING  ntUnicodeString;    // NT Device Name "\Device\KernelModeDriver"
    UNICODE_STRING  ntWin32NameString;    // Win32 Name "\DosDevices\KernelModeDriver"
    PDEVICE_OBJECT  deviceObject = NULL;    // ptr to device object

    UNREFERENCED_PARAMETER(RegistryPath);

    RtlInitUnicodeString( &ntUnicodeString, NT_DEVICE_NAME );

    ntStatus = IoCreateDevice(
        DriverObject,                   // Our Driver Object
        0,                              // We don't use a device extension
        &ntUnicodeString,               // Device name "\Device\KernelModeDriver"
        FILE_DEVICE_UNKNOWN,            // Device type
        FILE_DEVICE_SECURE_OPEN,        // Device characteristics
        FALSE,                          // Not an exclusive device
        &deviceObject );                // Returned ptr to Device Object

    if ( !NT_SUCCESS( ntStatus ) )
    {
        DRIVER_PRINT(("Couldn't create the device object\n"));
        return ntStatus;
    }

    //
    // Initialize the driver object with this driver's entry points.
    //

    DriverObject->MajorFunction[IRP_MJ_CREATE] = DriverCreateClose;
    DriverObject->MajorFunction[IRP_MJ_CLOSE] = DriverCreateClose;
    DriverObject->MajorFunction[IRP_MJ_DEVICE_CONTROL] = DriverDeviceControl;
    DriverObject->DriverUnload = DriverUnloadDriver;

    //
    // Initialize a Unicode String containing the Win32 name
    // for our device.
    //

    RtlInitUnicodeString( &ntWin32NameString, DOS_DEVICE_NAME );

    //
    // Create a symbolic link between our device name  and the Win32 name
    //

    ntStatus = IoCreateSymbolicLink(
                        &ntWin32NameString, &ntUnicodeString );

    if ( !NT_SUCCESS( ntStatus ) )
    {
        //
        // Delete everything that this routine has allocated.
        //
        DRIVER_PRINT(("Couldn't create symbolic link\n"));
        IoDeleteDevice( deviceObject );
    }


    return ntStatus;
}


NTSTATUS
DriverCreateClose(
    PDEVICE_OBJECT DeviceObject,
    PIRP Irp
    )
/*++

Routine Description:

    This routine is called by the I/O system when the KernelModeDriver is opened or
    closed.

    No action is performed other than completing the request successfully.

Arguments:

    DeviceObject - a pointer to the object that represents the device
    that I/O is to be done on.

    Irp - a pointer to the I/O Request Packet for this request.

Return Value:

    NT status code

--*/

{
    UNREFERENCED_PARAMETER(DeviceObject);

    PAGED_CODE();

    Irp->IoStatus.Status = STATUS_SUCCESS;
    Irp->IoStatus.Information = 0;

    IoCompleteRequest( Irp, IO_NO_INCREMENT );

    return STATUS_SUCCESS;
}

VOID
DriverUnloadDriver(
    _In_ PDRIVER_OBJECT DriverObject
    )
/*++

Routine Description:

    This routine is called by the I/O system to unload the driver.

    Any resources previously allocated must be freed.

Arguments:

    DriverObject - a pointer to the object that represents our driver.

Return Value:

    None
--*/

{
    PDEVICE_OBJECT deviceObject = DriverObject->DeviceObject;
    UNICODE_STRING uniWin32NameString;

    PAGED_CODE();

    //
    // Create counted string version of our Win32 device name.
    //

    RtlInitUnicodeString( &uniWin32NameString, DOS_DEVICE_NAME );


    //
    // Delete the link from our device name to a name in the Win32 namespace.
    //

    IoDeleteSymbolicLink( &uniWin32NameString );

    if ( deviceObject != NULL )
    {
        IoDeleteDevice( deviceObject );
    }



}

NTSTATUS
DriverDeviceControl(
    PDEVICE_OBJECT DeviceObject,
    PIRP Irp
    )

/*++

Routine Description:

    This routine is called by the I/O system to perform a device I/O
    control function.

Arguments:

    DeviceObject - a pointer to the object that represents the device
        that I/O is to be done on.

    Irp - a pointer to the I/O Request Packet for this request.

Return Value:

    NT status code

--*/

{
    PIO_STACK_LOCATION  irpSp;// Pointer to current stack location
    NTSTATUS            ntStatus = STATUS_SUCCESS;// Assume success
    ULONG               inBufLength; // Input buffer length
    ULONG               outBufLength; // Output buffer length
    void                *inBuf; // pointer to input buffer
    unsigned __int64    *outBuf; // pointer to the output buffer

    UNREFERENCED_PARAMETER(DeviceObject);

    PAGED_CODE();

    irpSp = IoGetCurrentIrpStackLocation( Irp );
    inBufLength = irpSp->Parameters.DeviceIoControl.InputBufferLength;
    outBufLength = irpSp->Parameters.DeviceIoControl.OutputBufferLength;

    if (!inBufLength || !outBufLength || outBufLength != sizeof(unsigned __int64)*2)
    {
        ntStatus = STATUS_INVALID_PARAMETER;
        goto End;
    }

    //
    // Determine which I/O control code was specified.
    //

    switch ( irpSp->Parameters.DeviceIoControl.IoControlCode )
    {
    case IOCTL_SIOCTL_METHOD_BUFFERED:

        //
        // In this method the I/O manager allocates a buffer large enough to
        // to accommodate larger of the user input buffer and output buffer,
        // assigns the address to Irp->AssociatedIrp.SystemBuffer, and
        // copies the content of the user input buffer into this SystemBuffer
        //

        DRIVER_PRINT(("Called IOCTL_SIOCTL_METHOD_BUFFERED\n"));
        PrintIrpInfo(Irp);

        //
        // Input buffer and output buffer is same in this case, read the
        // content of the buffer before writing to it
        //

        inBuf = (void *)Irp->AssociatedIrp.SystemBuffer;
        outBuf = (unsigned __int64 *)Irp->AssociatedIrp.SystemBuffer;

        //
        // Read the data from the buffer
        //

        DRIVER_PRINT(("\tData from User :"));
        //
        // We are using the following function to print characters instead
        // DebugPrint with %s format because we string we get may or
        // may not be null terminated.
        //
        PrintChars(inBuf, inBufLength);

        //
        // Write to the buffer
        //

        unsigned __int64 data[sizeof(unsigned __int64) * 2];
        data[0] = __readmsr(232);
        data[1] = __readmsr(231);

        DRIVER_PRINT(("data[0]: %d", data[0]));
        DRIVER_PRINT(("data[1]: %d", data[1]));

        RtlCopyBytes(outBuf, data, outBufLength);

        //
        // Assign the length of the data copied to IoStatus.Information
        // of the Irp and complete the Irp.
        //

        Irp->IoStatus.Information = sizeof(unsigned __int64)*2;

        //
        // When the Irp is completed the content of the SystemBuffer
        // is copied to the User output buffer and the SystemBuffer is
        // is freed.
        //

       break;

    default:

        //
        // The specified I/O control code is unrecognized by this driver.
        //

        ntStatus = STATUS_INVALID_DEVICE_REQUEST;
        DRIVER_PRINT(("ERROR: unrecognized IOCTL %x\n",
            irpSp->Parameters.DeviceIoControl.IoControlCode));
        break;
    }

End:
    //
    // Finish the I/O operation by simply completing the packet and returning
    // the same status as in the packet itself.
    //

    Irp->IoStatus.Status = ntStatus;

    IoCompleteRequest( Irp, IO_NO_INCREMENT );

    return ntStatus;
}

VOID
PrintIrpInfo(
    PIRP Irp)
{
    PIO_STACK_LOCATION  irpSp;
    irpSp = IoGetCurrentIrpStackLocation( Irp );

    PAGED_CODE();

    DRIVER_PRINT(("\tIrp->AssociatedIrp.SystemBuffer = 0x%p\n",
        Irp->AssociatedIrp.SystemBuffer));
    DRIVER_PRINT(("\tIrp->UserBuffer = 0x%p\n", Irp->UserBuffer));
    DRIVER_PRINT(("\tirpSp->Parameters.DeviceIoControl.Type3InputBuffer = 0x%p\n",
        irpSp->Parameters.DeviceIoControl.Type3InputBuffer));
    DRIVER_PRINT(("\tirpSp->Parameters.DeviceIoControl.InputBufferLength = %d\n",
        irpSp->Parameters.DeviceIoControl.InputBufferLength));
    DRIVER_PRINT(("\tirpSp->Parameters.DeviceIoControl.OutputBufferLength = %d\n",
        irpSp->Parameters.DeviceIoControl.OutputBufferLength ));
    return;
}

VOID
PrintChars(
    _In_reads_(CountChars) PCHAR BufferAddress,
    _In_ size_t CountChars
    )
{
    PAGED_CODE();

    if (CountChars) {

        while (CountChars--) {

            if (*BufferAddress > 31
                 && *BufferAddress != 127) {

                KdPrint (( "%c", *BufferAddress) );

            } else {

                KdPrint(( ".") );

            }
            BufferAddress++;
        }
        KdPrint (("\n"));
    }
    return;
}

driver.h

//
// Device type           -- in the "User Defined" range."
//
#define SIOCTL_TYPE 40000
//
// The IOCTL function codes from 0x800 to 0xFFF are for customer use.
//
#define IOCTL_SIOCTL_METHOD_IN_DIRECT \
    CTL_CODE( SIOCTL_TYPE, 0x900, METHOD_IN_DIRECT, FILE_ANY_ACCESS  )

#define IOCTL_SIOCTL_METHOD_OUT_DIRECT \
    CTL_CODE( SIOCTL_TYPE, 0x901, METHOD_OUT_DIRECT , FILE_ANY_ACCESS  )

#define IOCTL_SIOCTL_METHOD_BUFFERED \
    CTL_CODE( SIOCTL_TYPE, 0x902, METHOD_BUFFERED, FILE_ANY_ACCESS  )

#define IOCTL_SIOCTL_METHOD_NEITHER \
    CTL_CODE( SIOCTL_TYPE, 0x903, METHOD_NEITHER , FILE_ANY_ACCESS  )


#define DRIVER_FUNC_INSTALL     0x01
#define DRIVER_FUNC_REMOVE      0x02

#define DRIVER_NAME       "ReadMSRDriver"

现在,这是加载并使用驱动程序的应用程序(Win32控制台应用程序):

FrequencyCalculator.cpp

#include "stdafx.h"
#include <iostream>
#include <windows.h>
#include <winioctl.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <strsafe.h>
#include <process.h>
#include "..\KernelModeDriver\driver.h"

using namespace std;

BOOLEAN
ManageDriver(
_In_ LPCTSTR  DriverName,
_In_ LPCTSTR  ServiceName,
_In_ USHORT   Function
);

HANDLE hDevice;
TCHAR driverLocation[MAX_PATH];

void InstallDriver()
{
    DWORD errNum = 0;
    GetCurrentDirectory(MAX_PATH, driverLocation);
    _tcscat_s(driverLocation, _T("\\KernelModeDriver.sys"));

    std::wcout << "Trying to install driver at " << driverLocation << std::endl;

    //
    // open the device
    //

    if ((hDevice = CreateFile(_T("\\\\.\\KernelModeDriver"),
        GENERIC_READ | GENERIC_WRITE,
        0,
        NULL,
        CREATE_ALWAYS,
        FILE_ATTRIBUTE_NORMAL,
        NULL)) == INVALID_HANDLE_VALUE) {

        errNum = GetLastError();

        if (errNum != ERROR_FILE_NOT_FOUND) {

            printf("CreateFile failed!  ERROR_FILE_NOT_FOUND = %d\n", errNum);

            return;
        }

        //
        // The driver is not started yet so let us the install the driver.
        // First setup full path to driver name.
        //

        if (!ManageDriver(_T(DRIVER_NAME),
            driverLocation,
            DRIVER_FUNC_INSTALL
            )) {

            printf("Unable to install driver. \n");

            //
            // Error - remove driver.
            //

            ManageDriver(_T(DRIVER_NAME),
                driverLocation,
                DRIVER_FUNC_REMOVE
                );

            return;
        }

        hDevice = CreateFile(_T("\\\\.\\KernelModeDriver"),
            GENERIC_READ | GENERIC_WRITE,
            0,
            NULL,
            CREATE_ALWAYS,
            FILE_ATTRIBUTE_NORMAL,
            NULL);

        if (hDevice == INVALID_HANDLE_VALUE){
            printf("Error: CreatFile Failed : %d\n", GetLastError());
            return;
        }
    }
}

void UninstallDriver()
{
    //
    // close the handle to the device.
    //

    CloseHandle(hDevice);

    //
    // Unload the driver.  Ignore any errors.
    //
    ManageDriver(_T(DRIVER_NAME),
        driverLocation,
        DRIVER_FUNC_REMOVE
        );
}

double GetPerformanceRatio()
{
    BOOL bRc;
    ULONG bytesReturned;

    int input = 0;
    unsigned __int64 output[2];
    memset(output, 0, sizeof(unsigned __int64) * 2);

    //printf("InputBuffer Pointer = %p, BufLength = %d\n", &input, sizeof(&input));
    //printf("OutputBuffer Pointer = %p BufLength = %d\n", &output, sizeof(&output));

    //
    // Performing METHOD_BUFFERED
    //

    //printf("\nCalling DeviceIoControl METHOD_BUFFERED:\n");

    bRc = DeviceIoControl(hDevice,
        (DWORD)IOCTL_SIOCTL_METHOD_BUFFERED,
        &input,
        sizeof(&input),
        output,
        sizeof(unsigned __int64)*2,
        &bytesReturned,
        NULL
        );

    if (!bRc)
    {
        //printf("Error in DeviceIoControl : %d", GetLastError());
        return 0;

    }
    //printf("    OutBuffer (%d): %d\n", bytesReturned, output);
    if (output[1] == 0)
    {
        return 0;
    }
    else
    {
        return (float)output[0] / (float)output[1];
    }
}

struct Core
{
    int CoreNumber;
};

int GetNumberOfProcessorCores()
{
    SYSTEM_INFO sysinfo;
    GetSystemInfo(&sysinfo);
    return sysinfo.dwNumberOfProcessors;
}

float GetCoreFrequency()
{
    // __rdtsc: Returns the processor time stamp which records the number of clock cycles since the last reset.
    // QueryPerformanceCounter: Returns a high resolution time stamp that can be used for time-interval measurements.
    // Get the frequency which defines the step size of the QueryPerformanceCounter method.
    LARGE_INTEGER frequency;
    QueryPerformanceFrequency(&frequency);
    // Get the number of cycles before we start.
    ULONG cyclesBefore = __rdtsc();
    // Get the Intel performance ratio at the start.
    float ratioBefore = GetPerformanceRatio();
    // Get the start time.
    LARGE_INTEGER startTime;
    QueryPerformanceCounter(&startTime);
    // Give the CPU cores enough time to repopulate their __rdtsc and QueryPerformanceCounter registers.
    Sleep(1000);
    ULONG cyclesAfter = __rdtsc();
    // Get the Intel performance ratio at the end.
    float ratioAfter = GetPerformanceRatio();
    // Get the end time.
    LARGE_INTEGER endTime;
    QueryPerformanceCounter(&endTime);
    // Return the number of MHz. Multiply the core's frequency by the mean MSR (model-specific register) ratio (the APERF register's value divided by the MPERF register's value) between the two timestamps.
    return ((ratioAfter + ratioBefore) / 2)*(cyclesAfter - cyclesBefore)*pow(10, -6) / ((endTime.QuadPart - startTime.QuadPart) / frequency.QuadPart);
}

struct CoreResults
{
    int CoreNumber;
    float CoreFrequency;
};

CRITICAL_SECTION printLock;

static void printResult(void *param)
{
    EnterCriticalSection(&printLock);
    CoreResults coreResults = *((CoreResults *)param);
    std::cout << "Core " << coreResults.CoreNumber << " has a speed of " << coreResults.CoreFrequency << " MHz" << std::endl;
    delete param;
    LeaveCriticalSection(&printLock);
}

bool closed = false;

static void startMonitoringCoreSpeeds(void *param)
{
    Core core = *((Core *)param);
    SetThreadAffinityMask(GetCurrentThread(), 1 << core.CoreNumber);
    while (!closed)
    {
        CoreResults *coreResults = new CoreResults();
        coreResults->CoreNumber = core.CoreNumber;
        coreResults->CoreFrequency = GetCoreFrequency();
        _beginthread(printResult, 0, coreResults);
        Sleep(1000);
    }
    delete param;
}

int _tmain(int argc, _TCHAR* argv[])
{
    InitializeCriticalSection(&printLock);
    InstallDriver();
    for (int i = 0; i < GetNumberOfProcessorCores(); i++)
    {
        Core *core = new Core{ 0 };
        core->CoreNumber = i;
        _beginthread(startMonitoringCoreSpeeds, 0, core);
    }
    std::cin.get();
    closed = true;
    UninstallDriver();
    DeleteCriticalSection(&printLock);
}

它使用install.cpp,您可以从IOCTL示例中获取。如果不是今晚,将在接下来的几天内在博客发布一个可以正常工作的解决方案(显然带有代码)

编辑:在http://www.dima.to/blog/?p=101上发布了博客(完整的源代码在那里)...

本文收集自互联网,转载请注明来源。

如有侵权,请联系[email protected] 删除。

编辑于
0

我来说两句

0条评论
登录后参与评论

相关文章

来自分类Dev

如何计算CPU内核数?

来自分类Dev

如何知道CPU频率?

来自分类Dev

如何一次为所有内核设置CPU频率缩放调节器?

来自分类Dev

如何一次为所有内核设置CPU频率缩放调节器?

来自分类Dev

如何完全禁用CPU频率缩放?在Intel Tiger Lake CPU笔记本电脑上运行的内核5.9的问题

来自分类Dev

如何在时钟频率,内核数和三级缓存大小不同的CPU之间进行选择?

来自分类Dev

如何减少Ubuntu更新内核的频率?

来自分类Dev

如何计算特定列表的频率?

来自分类Dev

如何计算文件中行的频率

来自分类Dev

如何计算列表的元素频率

来自分类Dev

如何从频率计算概率

来自分类Dev

如何计算特定列表的频率?

来自分类Dev

如何根据日期计算频率

来自分类Dev

如何在Android中设置CPU频率?

来自分类Dev

如何计算CPU负载?

来自分类Dev

如何计算给定波的频率和时间

来自分类Dev

如何计算R中的文件频率?

来自分类Dev

如何计算含有NaN的序列的频率?

来自分类Dev

如何计算每个嵌套列表的项目频率?

来自分类Dev

如何计算熊猫列中变量的频率

来自分类Dev

如何计算R中日期的频率?

来自分类Dev

如何计算kafka中每个ID的频率

来自分类Dev

如何按组计算观察频率

来自分类Dev

如何计算命令执行的频率?

来自分类Dev

如何计算文字中的单词频率

来自分类Dev

如何计算python字典中总值的频率?

来自分类Dev

如何计算列表中项目的频率?

来自分类Dev

如何计算数字x的频率

来自分类Dev

如何更改内核计时器频率?